Dominating Induced Matchings for P8-free Graphs in Polynomial Time

نویسندگان

  • Andreas Brandstädt
  • Raffaele Mosca
چکیده

Let G = (V,E) be a finite undirected graph. An edge set E ⊆ E is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of E. The Dominating Induced Matching (DIM ) problem asks for the existence of a d.i.m. in G; this problem is also known as the Efficient Edge Domination problem. The DIM problem is related to parallel resource allocation problems, encoding theory and network routing. It is NP-complete even for very restricted graph classes such as planar bipartite graphs with maximum degree three and is solvable in linear time for P7-free graphs. However, its complexity was open for Pk-free graphs for any k ≥ 8; Pk denotes the chordless path with k vertices and k − 1 edges. We show in this paper that the weighted DIM problem is solvable in polynomial time for P8-free graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Dominating Induced Matchings in (S2,2,3, S1,4,4)-Free Graphs in Polynomial Time

Let G = (V,E) be a finite undirected graph without loops and multiple edges. An edge set E ⊆ E is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of E. In particular, this means that E is an induced matching, and every edge not in E shares exactly one vertex with an edge in E. Clearly, not every graph has a d.i.m. The Dominating Induced Matching...

متن کامل

Dominating Induced Matchings in $S_{1, 2, 4}$-Free Graphs

Let G = (V,E) be a finite undirected graph without loops and multiple edges. A subset M ⊆ E of edges is a dominating induced matching (d.i.m.) in G if every edge in E is intersected by exactly one edge of M . In particular, this means that M is an induced matching, and every edge not in M shares exactly one vertex with an edge in M . Clearly, not every graph has a d.i.m. The Dominating Induced ...

متن کامل

Dominating induced matchings in graphs containing no long claw

An induced matching M in a graph G is dominating if every edge not in M shares exactly one vertex with an edge in M . The dominating induced matching problem (also known as efficient edge domination) asks whether a graph G contains a dominating induced matching. This problem is generally NP-complete, but polynomial-time solvable for graphs with some special properties. In particular, it is solv...

متن کامل

Graphs with maximal induced matchings of the same size

A graph is well-indumatched if all its maximal induced matchings are of the same size. We first prove that recognizing the class WIM of well-indumatched graphs is a co-NPcomplete problem even for (2P5,K1,5)-free graphs. We then show that the well-known decision problems such as Independent Dominating Set, Independent Set, and Dominating Set are NP-complete for well-indumatched graphs. We also s...

متن کامل

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1507.06541  شماره 

صفحات  -

تاریخ انتشار 2015